2014 Cancer Frontier Fund Awardee Project Descriptions

John DiPersio, MD, PhD, Virginia E. and Samuel J. Golman Professor in Medicine
"Epigenetic Modulation of GvHD and GvL"

Description: Cancers affecting the blood, bone marrow and lymph nodes-such as leukemia-remain a significant public health problem, accounting for about 10 percent of new cancer diagnoses. Patients with these types of cancers can often be cured by bone marrow transplants. One type of cell in the donated transplant is a white blood cell (lymphocyte) called a T cell. As part of the immune system, T cells are the primary leukemia-fighting cells. However, in about 40 percent of cases, the donated T cells sometimes become overzealous and also attack the patient's skin, intestines, liver, and mucosa. This very painful and sometimes fatal condition is known as Graft versus Host Disease (GvHD). It affects nearly 50 percent of patients who have had a bone marrow transplant.

In Dr. DiPersio's study, he and his team are exploring whether acute myelogenous leukemia (AML) or myelodysplastic syndrome (MDS) patients who receive bone marrow transplants experience less GvHD when given azacytidine, a drug already approved by the FDA for other purposes. In previous studies, the drug was shown to alter T cells so they retained their ability to attack the leukemia cells, but substantially reduced their undesired GvHD effect-sometimes totally eliminating it. This could be a significant step forward in cancer care. The hope is that this simple approach will reduce rates of GvHD after transplant and improve survival and quality of life after transplant.


John DiPersio, MD, PhD, Virginia E. and Samuel J. Golman Professor in Medicine
"Immune-Based Therapies for AML"

Description:  Through this study, Dr. DiPersio and his team will develop and test novel immune based therapies and cellular therapies to treat acute myelogenous leukemia (AML). About 60 to 80 percent of patients with AML will either relapse or have disease that doesn't respond to initial chemotherapy. Unfortunately, novel chemotherapy drugs have not improved patient outcomes and no new agents have been approved for AML since 1990.

Stem cell transplantation is one treatment approach to AML but it comes with some significant, treatment-related risks that can affect quality of life or even be life-threatening. Targeted immunotherapy represents a promising avenue for improving the outcomes of patients with AML.

Dr. DiPersio's team is tackling AML through a three-pronged approach. First, they will generate and test small proteins derived from antibodies that target unique antigens expressed or overexpressed on AML cells compared to normal cells. They will also modify and optimize these proteins so that natural killer (NK) and other cancer-fighting cells, in addition to T cells (the primary leukemia-fighting cells), more effectively kill the AML cancer cells.

In another trial, the team will test a new class of NK cells for their ability to kill AML cells. Finally, they will attempt to identify antigens on AML cells for the future development of targeting agents that engage other immune cells to attack cancer cells.

These novel therapeutic approaches show promise to be profoundly effective in AML, a disease for which therapy has not changed for more than 40 years. The discoveries made in these projects will pave the way for development of additional agents and approaches to treat other blood and solid tumor cancers.


William Gillanders, MD, Professor, Department of Surgery
"Phase 1B Clinical Trial of a Candidate Breast Cancer Prevention Vaccine"

Description:   Cancer vaccines have generated considerable enthusiasm because of their tremendous potential for cancer prevention. Dr. Gillanders and his team have identified mammaglobin-A, a breast cancer-associated protein, as an excellent target for vaccine therapy. Mammaglobin-A is expressed in almost all breast cancers, and can potently stimulate the immune system. Thus, a mammaglobin-A vaccine would have significant potential for breast cancer prevention.

Through the study, Dr. Gillanders and his team will gain additional information about the vaccine's safety, assess the vaccine's ability to induce an immune response, and help optimize the vaccine's effectiveness against breast cancer. This study will significantly advance the clinical development of this innovative mammaglobin-A DNA vaccine.


Gerald Linette, MD, PhD, Associate Professor, Dept. of Internal Medicine, Oncology Division
"Patient-Specific Mutation-Directed Immunotherapy for Melanoma"

Description:  The incidence of malignant melanoma (skin cancer) continues to rise worldwide. Metastatic melanoma remains an incurable cancer and novel treatments are urgently needed. The good news is recent advances with immunotherapy-which triggers the body's own immune system to fight cancer-suggest that lasting remissions are possible.

Mutations, or alterations in the DNA, due to sunlight exposure accumulate over time and promote the transformation of benign pigmented moles to malignant melanoma. Dr. Linette's research team believes that the immune system has the ability to recognize the sunlight-induced cell alterations as foreign and mount an immune response to attack the melanoma. The research project will analyze the melanoma genomes of five patients and identify mutations that are unique to each individual. Using these specific mutations, researchers will develop a customized cellular therapy vaccine to treat patients with advanced melanoma.


A. Craig Lockhart, MD, Associate Professor, Dept. of Internal Medicine, Oncology Division
"Tamoxifen to Treat Barrett's Metaplasia"

Description:  Barrett's esophagus (BE) is a condition in which the cells of the lower esophagus become damaged. This is usually caused by repeated exposure to stomach acid from acid reflux. Barrett's esophagus has no current treatment and can lead to esophageal cancer.

Dr. Lockhart's research aims to prevent cancer from forming by treating patients with Barrett's esophagus with tamoxifen, an established hormonal therapy, to determine whether the drug can reverse some of the molecular changes associated with this condition. Tamoxifen is already a well-studied drug with few side effects. If this treatment strategy proves successful, this could represent a new treatment approach for patients with Barrett's esophagus-and even prevent esophageal cancer. In addition, repurposing an already approved cancer drug as a cancer preventative can shorten the time needed to bring a new therapy to use in patients.


Lee Ratner, MD, PhD, Professor, Dept. of Internal Medicine, Molecular Oncology Division
"Role of Notch Signaling in Aids-Associated Kaposi's Sarcoma"

Description:  Dr. Ratner is launching a unique clinical study of AIDS-associated Kaposi's Sarcoma (KS). KS is an incurable tumor that often involves the skin, lungs, and gastrointestinal tract of patients with AIDS (acquired immunodeficiency syndrome) or other immunosuppressed conditions. KS is also found in elderly men in the Mediterranean area and boys in central Africa. The tumor is caused by the KS herpes virus (KSHV).

The Notch pathway is important for stem cells, development and new blood vessel formation. Mutations in Notch regulators appear frequently in a wide range of cancers; the Notch pathway can feed cancer growth. Drugs, known as gamma secretase inhibitors (GSI), have been developed to block Notch. In tissue culture studies, GSIs cause KS cell death.

Dr. Ratner's project is one of the first studies of any GSI to treat a specific form of cancer, i.e. KS. The next steps are for Dr. Ratner to work with patients to assess tolerance and response of KS to GSI; to determine whether levels of Notch regulators and Notch target genes are major determinants of how the cancer responds to the GSIs; and to determine which KSHV proteins are expressed in each patient's tumor and whether a specific pattern of protein expression predicts how the cancer responds. In addition, the study will determine what role new blood vessel formation plays in how GSIs work.

The outcome of this study could lead to new treatment for KS and could provide new information about the use of GSIs in other cancers.


Ravindra Uppaluri, MD, PhD, Associate Professor, Department of Otolaryngology
"Development of a Multigene Assay for Predicting Oral Cancer Metastasis"

Description:  Oral cavity squamous cell carcinoma (OCSCC), a form of oral cancer, is a global health problem. More than 27,000 people are diagnosed each year in the United States alone.  Unfortunately, early stage oral cancer is not always properly assessed, which can lead to overtreatment with surgery or radiation. Those treatments can lead to higher costs as well as more complications.

When OCSCC patients are first seen, treating physicians must decide whether the cancer has spread from the mouth to neck lymph nodes. Cancer that has spread to lymph nodes has a poorer prognosis because it may mean cancer can recur after treatment or has spread throughout the body. However, even if there are no obvious signs that cancer is in the lymph nodes, some surgeons prophylactically remove most of the lymph nodes in the neck prophylactically anyway. Unfortunately, this is an unnecessary operation in 70 to 80 percent of these patients and is associated with extended hospital stays, financial burden and surgical complications, including weakness in the shoulder due to nerve damage.

Dr. Uppaluri is studying the genetic signature of aggressive oral cancer tumors to predict which cancers are more likely to spread. If the study proves that the genetic predictor tests are as accurate as the pathology information provided by removing neck lymph nodes, then the test could be used to screen patients for metastatic disease without subjecting them to neck surgery.

The data collected from this study will support the development of the genetic test to reduce unnecessary surgery and provide patients with important information about their prognosis, such as whether the tumor is aggressive or likely to spread.